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Molecular Signaling in the Regulation of Mucins
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Abstract Mucins are large, highly glycosylated proteins involved in the protection of epithelia. The 20 different
mucins showadiverse andhighly regulated distribution amongdifferent epithelia.Most of the studies onmucin regulation
done to date have been on the membrane mucins MUC1 and MUC4 and the gel-forming mucins. Multiple mechanisms
have been implicated in that regulation, including examples at the transcriptional, transcript stabilization and post-
translational levels. Several signaling pathways have been demonstrated to be involved,most frequently the canonical Erk
MAP kinase pathway, but also the cytokine-JAK-STAT pathway and TGFb-SMAD pathways. Diversity in Erk signaling is
achieved through multiple activation mechanisms and multiple downstream transcriptional factors that are affected.
Given the still limited amount of information available on regulation of most of the mucins, other mechanisms and
pathways are likely to be uncovered in the future. J. Cell. Biochem. 102: 1103–1116, 2007. � 2007 Wiley-Liss, Inc.
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Mucins are large, highly O-glycosylated pro-
teins which provide protection for epithelial
surfaces. Although they are frequently treated
as a gene family, most mucins represent simply
a collection of molecules with similar character-
istics. The two major features are the large
fraction of serine and threonine residues which
are O-glycosylated and the presence of tandem
repeats [Carraway, 2000]. Some 20 different
human mucins (Table I) have been described,
primarily from sequence data that provide the
first characterization. Note that humanmucins
are designated in capitals, as in MUC1, while
rodentmucins are indicated asMuc.Mucins are
generally divided into two classes, secreted and
membrane, based both on sequence data and
biochemical studies. This classification is a bit
misleading, as some membrane mucins can be
cleaved within the cell and secreted [Komatsu
et al., 2002]. Perhaps the best functional
classification is into three categories: mem-
brane, which have a transmembrane sequence;

gel-forming, secreted mucins found in mucus
gels; and other. Functionally, gel-forming
mucins provide hydration, lubrication, trans-
port, and protection mechanisms for mucosa.
They are produced primarily by specialized
cells, goblet cells embedded in epithelia or
submucosal gland cells [Ali and Pearson,
2007]. Membrane mucins not only provide the
ultimate barrier for the epithelial surface but
also stimulate additional protective mecha-
nisms, for example, to promote cell survival
[Komatsu et al., 2001; Raina et al., 2004], by
their involvement in cell signaling [Carraway
et al., 2003].Membranemucins are produced by
many epithelia. Much of the attention directed
toward mucins results from their roles in
diseases of the epithelia in which production of
the mucins is altered, including carcinomas,
which are derived from epithelial cells.

BIOSYNTHESIS

The synthesis of mucins follows the general
scheme of all secreted and cell surface glyco-
proteins. Transcripts, which for most mucins
are extremely large, are translated on endo-
plasmic reticulum-associated ribosomes and
threaded through a channel into the ER lumen.
N-glycosides are added co-translationally, and
the signal sequence that specifies ER binding is
removed by proteolysis. The glycoproteins next
undergo a ‘‘copy-editing’’ step to eliminate mis-
folded proteins that involves deglucosylation/
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glucosylation and proteosomal degradation
[Helenius and Aebi, 2004]. The proteosome
may also provide a regulatory mechanism for
some mucins to prevent their overexpression
(see section onPost-Translational Regulation of
Muc4). O-glycosylation and further processing
of the N-glycosides occurs during the transit
of the mucins to the cell surface. In the case of
the gel-forming mucins, disulfide formation
between subunits and packaging into granules
also happens during this transit [Perez-Vilar
and Hill, 1999]. The soluble form of at least
one membrane mucin, Muc4, is also packaged
into secretory granules in selected tissues [Rossi
et al., 1996; Arango et al., 2001]. Although
membrane mucins are frequently pictured as
perpendicular to the membrane, it is clear that
this orientation is not possible in the transit
compartments responsible for glycosylation,
since the mucin polypeptides are much longer
than the glycosyltransferases which must gly-
cosylate them. In order to account for the
extensive glycosylation along the mucin poly-
peptides and the relatively rigid structure
resulting from that glycosylation, the mem-
brane mucins must be parallel and proximal to
the membrane as they are being glycosylated.
This requirement may explain why most, if not
all, membrane mucins undergo a cleavage into
two subunits early in their transit to the cell
surface [Sheng et al., 1990;Hilkens et al., 1992].

Perhaps they assume a more perpendicular
orientation after they reach the cell surface.

DISTRIBUTION

Mucins exhibit a highly ordered tissue distri-
bution, indicating a tight regulation of their
expression. Some, suchas themembranemucins
MUC1 and MUC4, are present in multiple
tissues. Others have more limited expression,
such as MUC2 predominantly in the intestine.
Expression is also developmentally regulated,
usually arising at a specific developmental stage
and continuing in the adult [Reid and Harris,
1998]. An interesting case occurs with MUC4 in
the skin, which is present in the embryo before
cornification, but not in the adult [Zhang et al.,
2006]. The airway appears to produce the largest
variety of mucins [Rose and Voynow, 2006] and
provides examples of cell-specific expression.
MUC5AC is secreted by goblet cells of the airway
luminal epithelium,whileMUC5B is secreted by
airway glandular epithelium [Rose and Voynow,
2006]. Carcinomas, which are derived from
epithelial cells, frequently exhibit an altered
expression of mucins compared to their normal
counterparts [Hollingsworth and Swanson,
2004]. For example, overexpression of MUC1 is
a characteristic of most breast carcinomas
[Gendler, 2001]. MUC16 was originally recog-
nized by an antibody developed for diagnosis of

TABLE I. Human Mucin Genes; Search Conducted Through NCBI Genomic Biology, Human
Genome (5/2007)

Human
mucin Approved name Ref. Seq. ID’s Chromosome Gene ID

MUC1 Mucin 1, cell surface associated NM_002456 1q22 4582
MUC2 Mucin 2, oligomeric mucus/gel-forming NM_002457 11p15.5 4583
MUC3/17 Mucin 17, cell surface associated NM_001040105 7q22 140453
MUC3A Mucin 3A, cell surface associated AF113616 7q22 4584
MUC3B Mucin 3B, cell surface associated AJ291390 7q22 57876
MUC4 Mucin 4, cell surface associated NM_018406 3q29 4585
MUC5AC Mucin 5AC, oligomeric mucus/gel-forming XM_001130382 11p15.5 4586
MUC5B Mucin 5B, oligomeric mucus/gel-forming XM_001126093 11p15.5 727897
MUC6 Mucin 6, oligomeric mucus/gel-forming XM_290540 11p15.5 4588
MUC7 Mucin 7, secreted NM_152291 4q13.3 4589
MUC8 Mucin 8 U14383 12q24.3 4590
MUC9 Oviductal glycoprotein 1, 120 kDa (mucin 9, oviductin) NM_002557 1p13.2 5016
MUC10 Record discontinued 386748
MUC11 Withdrawn and substituted by MUC12 10071
MUC12 Mucin 12, cell surface associated XM_379904 7q22 10071
MUC13 Mucin 13, cell surface associated NM_033049 3q21.2 566671
MUC14 EMCN, endomucin NM_016242 4q22.1 51705
MUC15 Mucin 15, cell surface associated NM_145650 11p14.3 143662
MUC16 Mucin 16, cell surface associated NM_024690 19p13.2 94025
MUC18 MCAM, melanoma cell adhesion molecule X68264 11q23.3 4162
MUC19 Mucin 19, oligomeric AY236870 12q12 283463
MUC20 Mucin 20, cell surface associated NM_152673 3q29 200958
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ovarian cancer [Yin and Lloyd, 2001]. Dysregu-
lation of mucin expression also frequently
accompanies inflammatory responses [Voynow
et al., 2006].
One problem with assessing mucin expres-

sion in various tissues is the variability of the
methods used. Much of the early work was done
by analyzing transcripts by Northern blotting
or in situ hybridization. However, mucin pro-
tein levels do not always correspond to the
transcript levels. A noteworthy case is ratMuc4
in the mammary gland, which is post-transla-
tionally downregulated in the virgin gland but
not in the lactating gland [Price-Schiavi et al.,
1998]. Analysis of mucin protein levels can be
difficult, as mucin antibodies are notoriously
fickle, particularly for immunohistochemistry.
Antibodies made against tandem repeat se-
quences frequently do not recognize mature
forms of the mucin, in which these sequences
are heavily glycosylated [Burchell et al., 2001].
Antibodies against other domains may be
similarly masked by fixation during tissue
preparation.

TRANSCRIPTIONAL REGULATION

Promoter Regions of Mucin Genes

Much of the work on mucin regulation has
been directed toward transcriptional control.
The diversity of gene expression patterns
described above can be ascribed to two aspects
of transcriptional regulation: specific, unique
promoter sequences in the MUC genes and
differential, tissue specific expression and reg-
ulation of transcriptional factors. Previous
reviews have provided extensive descriptions
of promoter sequences [Van Seuningen et al.,
2001; Andrianifahanana et al., 2005], which
have served to identify a plethora of specific
transcription factors involved in MUC gene
regulation (Table II). Most of these have been
characterized by analyses of their specific

interactions with the defined promoter ele-
ments. What is needed now is a better under-
standing of how these transcription factors are
regulated and activated.

Differentiation Factors

Mucins are the products of differentiated
epithelia. Consequently, it is not surprising
thatmucin production is affected by factors that
promote differentiation. What is sometimes
difficult to discern iswhether changes inmucins
result only from cellular changes or also from
increases in gene expression within those cells.
For example, airway epithelia respond to irri-
tants by increasing the number of goblet cells
which secrete the gel-forming mucin MUC5AC
[Rose and Voynow, 2006]. Chronic goblet cell
hyperplasia also occurs in chronic airway dis-
eases such as asthma. Thus, the resulting
increase in mucin production can be partially
explained by the increase in the terminally
differentiated goblet cells. However, studies in
cell culture models also suggest that differ-
entiation factors can directly affect mucin gene
expression.

The primary differentiation factor studied
has been retinoic acid (Table III), which acts via
specific nuclear receptors RAR and RXR to
activate gene transcription [Leid et al., 1992].
Retinoic acid contributions to airway cell differ-
entiation depend on its integration with a
complex set of environmental factors, including
the extracellular matrix [Moghal and Neel,
1998]. Normal human bronchial epithelial cells
undergo mucosecretory differentiation when
grown in the presence of retinoic acid on
collagen gel, which is necessary for the induc-
tion of the retinoic acid receptor. An important
effect of the retinoic acid is to repress signaling
through the canonical mitogenic pathway Raf-
Erk (Fig. 1). Inhibition of either the upstream
receptor tyrosine kinase, the epidermal growth
factor receptor (EGFR), or the Erk kinase MEK
could replace the collagen requirement for
retinoic acid-dependent differentiation. What
other pathways may be involved is unclear, but
studies in some other systems have shown the
ratio of the activities of two MAP kinases, p38
and Erk, to be an indicator of differentiation
[Nebreda and Porras, 2000].

In the case of the membrane mucin MUC4,
retinoic acid induced increased gene expression
in the pancreatic tumor cell via its receptor
RARa [Choudhury et al., 2000]. Surprisingly,

TABLE II. Transcription Factors Involved
in Mucin Gene Regulation

Transcription factor Mucin gene regulated

Sp1 family MUC1, MUC2, MUC4, MUC5AC,
MUC5B, MUC6

NFkB MUC1, MUC2, MUC5B
CDX family MUC2, MUC4
GATA family MUC4, MUC5B
STAT MUC1
PEA3 Rat Muc4
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the retinoic acid appeared to act via an inter-
mediate TGFb, which has been shown in other
systems to repress Muc4 expression by a post-
translational [Price-Schiavi et al., 2000] or
transcriptional [Idris and Carraway, 2000]
mechanism. Anti-TGFb blocked both TGFb-
and retinoic acid-induced expression of the
MUC4 gene in the pancreatic tumor cells.
Moreover, RARa antagonists inhibited the

upregulation of both TGFb-2 and MUC4 tran-
scripts. Thus, TGFb appears to be able to act on
MUC4 by a number of mechanisms depending
on cell context.

Phorbol esters serve as both differentiation
factors and tumor promoters, depending on cell
context, frequently by activating protein kinase
C (PKC) isoforms. Phorbol 12-myristate 13-
acetate (PMA) increases the transcription of

TABLE III. Regulatory Factors Involved in Mucin Expression

Mucin Factor Effect Tissue Pathway Mechanism References

MUC1
IFNg " Breast NFkb/stat1 Transcription Lagow and Carson [2002]
IFNg " Hematopoetic ? Transcription Reddy et al. [2003]
IL7 " Human T cells ? Transcription Vasir et al. [2005]
Indole 3-carbinol # Breast ? Transc./product. Lee et al. [2004]
Neutrophil elastase " Lung SP1 Transcription Kuwahara et al. [2005]
TNFa " Uterus NFkb Transcription Thathiah et al. [2004]
TNFa " Nasal epithel. TNFR Transcription Shirasaki et al. [2003]

MUC2
Butyrate " Colon tumor Erk Transcription Hatayama et al. [2007]
EGF " Airway SP1 Transcription Perrais et al. [2002]
Galectin3 " Colon tumor ? Transc./product. Dudas et al. [2002]
IL1 " Airway Transcription Kim YD
IL4, 13, TNFa " Colon tumor Mapk Transcription Iwashita et al. [2003]
PMA " Colon tumor Ras/MEK Transcription Lee et al. [2002]
Roxythromycin # Intestine NFkb Transcription Kim et al. [2004]
TNFa # Colon tumor JNK, NFkb Transcription Ahn et al. [2005]
Vasoactive peptide " Colon Erk/p38 Transcription Hokari et al. [2005]

MUC4
CFTR # Pancreas ? Transc./post-trans. Singh et al. [2007]
IGF " Rat mammary Erk Transc./product. Zhu et al. [2000]
IL4, IL9 " Lung Jak3 Transcription Damera et al. [2006]
Interferon-g and RA " Pancreas stat1/RAR Transcription Adrianifahanana [2005]
Neutrophil elastase " Airway ? Transcription Fischer et al. [2003]
Retinoic acid (RA) " Pancreas RAR/TGFb2 Transcription Choudhury et al. [2000]
TGFb # Pancreas Smad2/4 Transcription Jonckheere et al. [2004]
TGFb # Uterus ? Transc./product. Idris [2000]
TGFb # Mammary SMAD Post-translation Price-Schiavi [1998, 2000];

Soto [2003]
MUC5AC

Dexamethasone # Lung tumor ? Transc./product. Lu et al. [2005]
Dexamethasone " Primary lung ? Translation Lu et al. [2005]
Dexamethasone # Lung GRE Transcription Chen et al. [2006]
EGF " Airway SP1 Transcription Perrais et al. [2002]
EGF " Gall bladder MAP/Erk Transc./product. Finzi et al. [2006]
EGF " Airway EGFR activ. Transc./product. Casalino-Matsuda et al. [2006]
EGFR " Airway MAPK/Akt Transc./product. Kitazaki et al. [2005]
HAT " Airway EGFR/Erk Transcription Chokki et al. [2004, 2005]
IL13 " Airway TGFa, EGF Transcription Zheng [2007]
IL13 " Airway Differentiation Multiple levels Yasuo et al. [2006]
IL17 " Airway Erk/MAPK Production Inoue et al. [2006]
IL1b " Airway Cox2/PKA Production Gray et al. [2004]
IL1b " Airway Erk/p38 Transcription Song et al. [2003]
Neutrophil elastase " Lung tumor ROS/NQO1 Multiple levels Zheng [2007]
Neutrophil elastase " Airway NFkb/MAPK Transcription Song et al., 2005b
Neutrophil elastase " Airway ROS/PKC Transc./product. Shao and Nadel [2005]
Neutrophil elastase " Airway ROS mRNA stability Fischer and Voynow [2002]
Neutrophil elastase " Airway TGFa/EGF Production Kohri et al. [2002]
NO " Airway PKC Transcription Song et al. [2007]
PMA " Airway Ras/MEK/Sp1 Transc./product. Hewson et al. [2004]
ProstaglandinE2 " Airway ? Transc./product. Kook Kim et al. [2006]
TGFa " Airway e-cadh./EGF Production Kim et al. [2005]
TGFb2þ IL13 " Airway ? Transc./product. Chu et al. [2004]
TNFa " Airway IKKb Transc./product. Lora et al. [2005]
TNFa " Nasal epithel. Erk Transcription Young Kim et al. [2004]
TNFa " Airway Erk/p38 Transcription Song et al. [2003]

MUC5B
Neutrophil elastase " Lung tumor ROS/NQO1 Multiple levels Zheng [2007]
IL6, IL17 " Airway Jak/Stat/Erk Transcription Chen et al. [2003]
PMA " Airway Ras/Erk Transcription Yuan-Chen Wu et al. [2007]
RA " Airway ? Transcription Chen et al. [2001]
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MUC2 in HM3 colon cancer cells, acting on a 50-
flanking promoter region containing Sp1 and
NFkB sites [Lee et al., 2002]. Analyses using
pharmacological inhibitors and dominant neg-
ative effectors implicated activation of the Ras-
Erk pathway via PKC. NFkB was also directly
implicated. Activated Erk participates in the
regulation of several different mucin genes
(Table III, Fig. 1), involving different upstream
activators and downstream effectors, repre-
senting the variety of mechanisms by which
this pathway may participate in cellular regu-
lation.
Butyrate acts as a differentiation agent for a

number of cell types, including those of the
colon, in which it is produced by anaerobic
bacteria. Treatment of the human colon cancer
cell line LS174T with butyrate induces mucin
expression, increases histone H3 acetylation
and activates MUC2 production by stimulating
MUC2 gene expression [Hatayama et al., 2007].
Cell cycle arrest, but not apoptosis, accompa-
nied this treatment. Moreover, inhibition of
MEK blocked MUC2 production, implicating
the Erk signaling pathway (Fig. 1). These
results suggest an activation of theMUC2 gene
by butyrate that involves inhibition of histone
deacetylation and Erk phosphorylation.

Cytokines

As products of the immune system, cytokines
are defined by their immune functions. Type 1
cytokines are associatedwith a cellular immune
response and include interferon-g, tumor
necrosis factor, interleukins (IL) 1, 2, and 12.
Type 2 cytokines are associated with a humoral
immune response and include interleukins 4–6,
9, 10, and 13. Cytokines bind to specific
receptors to activate associated tyrosine kin-
ases that initiate downstream signaling. The

most common effect of cytokines is activation of
the JAK/STAT pathway, in which the tyrosine
kinase JAK phosphorylates the transcription
factor STAT to induce its dimerization. The
STAT dimer then migrates to the nucleus to
regulate transcription. Interferon-g has been
shown to promote expression of MUC1 in a
number of cell types, including ovarian carci-
noma [Clark et al., 1994], hematopoietic [Reddy
et al., 2003], and prostate tumor [O’Connor
et al., 2005] cells, apparently by STAT binding
to a site in the MUC1 promoter [Gaemers et al.,
2001]. Tumor necrosis factor-a (TNFa) is also
able to enhance MUC1 in multiple cell types. In
prostate tumor cells this effect has been shown
to be synergistic with interferon-g [O’Connor
et al., 2005].

MUC4 is also regulated transcriptionally by
interferon-g [Andrianifahanana et al., 2007].
Studies in pancreatic cancer cells show that the
MUC4 gene expression is delayed relative to
a second gene, that for interferon regulatory
factor-1, requiring an increase in STAT1 gene
expression. Chromatin immunoprecipitation
assays indicate that STAT1 binds directly to
interferon-g-activation sites in the MUC4 pro-
moter. Interestingly, interferon-g acts synerg-
istically with the differentiation factor retinoic
acid [Andrianifahanana et al., 2006]. Appa-
rently, this synergy requires shifts in the
downstream pathways, since interferon-g
represses the retinoic acid induction of TGFb
and retinoic acid inhibits the upregulation of
STAT1 by interferon-g. Such findings empha-
size the ability of tumors to evolve and select
new mechanisms to promote growth and sur-
vival characteristics during progression. Inter-
feron-g has no effect on Muc4 expression in rat
mammary epithelial cells, but can repress post-
translational regulation of Muc4 by TGFb by

Fig. 1. Variety of inputs and outputs of MAPK signaling pathways involved in mucin regulation.
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inducing SMAD7 [Soto et al., 2003]. Thus, the
interferon can act at multiple levels in regulat-
ingmucin expression depending on cell context.

Gel-forming mucins are also regulated by
type 1 cytokines, as exemplified by studies on
MUC2 and MUC5AC in airway epithelial and
tumor cells [Kim et al., 2002; Koo et al., 2002;
Song et al., 2003]. In normal human nasal
epithelial cells MUC5AC gene expression is
promoted by the type 1 inflammatory cytokines
TNFa and IL-1b via pathways that require both
Erk and p38 MAP kinases [Song et al., 2003].
The cyclic AMP response element in the
MUC5AC promoter has been implicated, with
its phosphorylation and activation mediated
by the mitogen- and stress-activated kinase
MSK1, downstream of Erk and p38 MAPK. IL-
1b inNCI-H292 cells, amodel system for airway
diseases, induced both MUC5AC and MUC2
gene expression by a similar mechanism,
requiring both Erk and p38 MAPKs [Kim
et al., 2002]. These in turn activated cyclo-
oxygenase-2 to produce prostaglandin E2.
Expression of the mucin genes was blocked by
COX-2 inhibitors and induced by PE2. Upregu-
lation of the gene expression can also be blocked
by retinoic acid inhibitors, suggesting a require-
ment for differentiation in these cells for mucin
production [Koo et al., 2002].

Type 2 cytokines, suchas IL-4 and IL-13, have
been implicated in goblet cell metaplasia and in
the regulation of mucins produced by goblet
cells, MUC2 and MUC5AC [Andrianifahanana
et al., 2006]. IL-4 and IL-13 act via a common
receptor IL-4R toactivateSTAT6.Whether they
are directly involved in transcriptional activa-
tion of the gel-formingmucin genes is somewhat
controversial because of differences observed
between different cell and animal systems and
the question of effects on goblet cell regulation
versus mucin gene regulation. For example, IL-
4 induced MUC2 gene expression in NCI-H292
cells andMuc5 gene expression inmouse airway
epithelial cells in vivo [Dabbagh et al., 1999]. In
contrast, IL-4 inhibited the expression of
MUC5AC and MUC5B in normal human tra-
cheobronchial cells [Jayawickreme et al., 1999].
In guinea pig tracheal epithelial cell cultures,
treatment with IL-13, but not IL-4, increased
the number of goblet cells and the amount
of secreted MUC5AC [Kondo et al., 2002].
However, MUC5AC gene expression was
decreased by IL-13 in human nasal epithelial
cells even though expression of MUC2 and

MUC8 genes were increased [Kim et al., 2002].
Unfortunately, we know too little about the
pathways and mechanisms involved in the
effects of these cytokines to be able to under-
stand how these different effects arise.

Bacterial Products

Since a major function of mucins is to protect
epithelia from infection, it is not surprising that
bacterial products can alter mucin gene expres-
sion (Table IV). Much of the work has been
done on airway epithelial cells and has provided
some interesting mechanistic observations. For
example, both Gram-positive and Gram-nega-
tive bacteria induce expression of the MUC2
gene via the Ras-Raf-MEK-Erk canonical mito-
genic pathway, even though they act through
different cell surface receptors [McNamara and
Basbaum, 2001]. Gram-negative Pseudomonas
aeruginosa can alterMUC2 gene expression via
two cell surface components: lipopolysaccharide
(LPS) and flagellin. Both of these induce an Src-
dependent activation of Ras, leading to down-
stream activation of Erk and p90rsk. p90rsk
phosphorylation of the NFkB inhibitory com-
plex frees it to bind to a promoter sequence on
theMUC2 gene. LPS activates the Ras pathway
via a toll-like receptor. Flagellin induces this
gene activation by binding to the glycolipid
asialoGM1 to stimulate the release of ATP from
the cells [McNamara and Basbaum, 2001]. ATP
then binds to a cell surface G protein-coupled
receptor to activate phospholipase C (PLC).
PLC cleaves phosphatides to produce diacylgly-
cerol and IP3, which mobilize calcium from
intracellular stores. DAG plus calcium can then
activate PKC, leading to stimulation ofmultiple
downstream pathways, including the Src-
dependent activation of Ras that stimulates
MUC2 gene activation [McNamara and Bas-
baum, 2001].

MUC5AC gene expression can be induced by
P6 outer membrane protein of Haemophilus
influenzae binding to cell surface toll-like
receptors [Chen et al., 2004]. P38 and NFkB
are stimulated through TAK1. p38-activated
AP1 and NFkB can then bind to the MCU5AC
promoter to induce its transcription.

The active factor in Gram-positive bacteria
is lipoteichoic acid, which binds to platelet-
activating factor receptor, a G protein-coupled
receptor [McNamara and Basbaum, 2001].
The GPCR transactivates the EGFR by stim-
ulating proteolytic release of an EGFR ligand,
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heparin-binding EGF, from its cell surface
precursor. The precursor is cleaved by the
metalloprotease ADAM10. Activated EGFR
stimulates Ras by coupling through an adapter
complex with the Ras activator SOS [Carraway
and Carraway, 1995].
Interestingly, the LPS from the gram-neg-

ative, periodontopathic bacteria Porphyromo-
nas gingivalis represses mucin synthesis and
increases apoptosis in salivary gland acinar
cells [Somiany and Slomiany, 2002]. Both p38
and Erk MAP kinases were involved and
stimulated the production of NO through NO
synthase. The data on the MAPKs show that
opposite responses on mucin expression can be
obtained through the same pathways in differ-
ent cell types.

Growth Factors and Receptors

Cell surface receptors play a critical role in
sensing environmental changes and responding.
The EGFR acts as an important damage sensor

in the airway to regulate mucin gene expression
[Burgel and Nadel, 2004]. Two mechanisms
appear to be important in activation of the
receptor. First, expression of the EGFR is
reported to be increased by airway damage
[Burgel et al., 2000]. Second, EGF, the ligand
for the EGFR, is present in airway luminal fluid,
but segregated from the receptor by the epithe-
lial polarity barrier [Vermeer et al., 2006].
Damage to the epithelium breaks the polarity
barrier and permits the ligand-receptor associa-
tion necessary for activation of the receptor.
Airway fluid also contains neuregulin [Vermeer
et al., 2003], the ligand for two other members of
the EGFR family, ErbB3 and ErbB4. Interest-
ingly, the membrane mucin Muc4 acts as an
intramembrane ligand for ErbB2, localizing it in
the apical membrane, which can segregate it
from forming active heterodimeric complexes
withtheother receptorsuntil thepolaritybarrier
is broken [Ramsauer et al., 2003, 2006; Carra-
way and Carraway, 2007].

TABLE IV. Biological Agents Regulating Mucin Expression

Mucin Agent Effect Cell/tissue Pathway Mechanism References

MUC2
Bile acids " Colon carcinoma AP1 Transc./produc. Song et al. [2005a]
Haemophilus inf. " Various epithelia NFkb/Smad Transcription Jono et al. [2002]
H. pylori " Gastric epithelia ? ? Babu et al. [2006]
LPS " Nasal epithelia ? Transcription Ishinaga et al. [2005]
Shigella " Intestine TNFa, PKC,

Erk
Production Radhakrishnan et al. [2007]

MUC3
Amyloid A3 " Intestine ? Transc./produc. Larson et al. [2003]
Lactobacillus " Intestine ? Transc./produc. Mack et al. [2003]
Listeriolysin " Intestinal ? Transc./produc. Lievin-Le Moal et al. [2002]
Rhinovirus " Airway surface ? Transc./produc. Inoue et al. [2006]

MUC4
Bile acid " Oesophageal HNFA1 Transc./produc. Piessen et al. [2007]
Bile acid " Oesophageal PI3K transcription Mariette et al. [2004]
Listeriolysin " Intestinal ? Transcription Lievin-Le Moal et al. [2002]
Wood smoke " Airway ? Transcription Bhattacharyya et al. [2004]

MUC5AC
Acrolein " Airway MMP/EGFR Transcription Deshmukh et al. [2005]
Complement " Airway ? Production Dillard et al. [2007]
Listeriolysin " Intestinal ? Production Lievin-Le Moal et al. [2002]
LPS " Intestinal IL8 signaling Transc./produc. Smirnova et al. [2003]
Pseudomonas " Airway EGF/MAPK Transc./produc. Kohri et al. [2002]
RSV " Airway stat1 ? Hashimoto et al. [2005]
Rhinovirus " Airway surface SRC, MAPK Transcription Inoue et al. [2006]
Shigella " Intestine TNFa, PKC,

Erk
Production Radhakrishnan et al. [2007]

S. Pneum " Airway IKK/Erk Transcription Ha et al. [2007]
Smoke " Airway EGFR Transc./produc. Baginski et al. [2006]
Smoke " Airway TACE/EGFR Transcription Shao et al. [2004]
Wood smoke " Airway ? Transcription Bhattacharyya et al. [2004]

MUC5B
LPS " Intestinal IL8 signaling Transc./produc. Smirnova et al. [2003]
Otitis media " Middle ear ? Transcription Elsheikh and Mahfouz [2006]
Rhinovirus " Airway surface ? Transcription Inoue et al. [2006]

MUC6
H. pylori " Gastric epithelia ? ? Xia et al. [2004]
H. pylori # Gastric epithelia ? ? Babu et al. [2006]
Rhinovirus " Airway ? Transcription Inoue et al. [2006]
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EGFR can be activated by other mechanisms,
including transactivation by GPCR via activa-
tion of proteases that release EGFR ligands
from their membrane precursors, as noted
above. Multiple proteases have been reported
to be involved in ligand production, either
directly or indirectly, including neutrophil
elastase, tumor necrosis factor alpha-convert-
ing enzyme (TACE) and tissue kallikrein
[Nadel, 2007]. A key aspect is how these
proteases are activated. Oxidant damage, such
as that induced by cigarette smoke, stimulates
the cellular production of reactive oxygen
species (ROS) via NADPH and dual oxidase-1.
ROS activate the protease TACE to cleave the
precursor for TGFa to release it as an active
ligand forEGFR [Nadel, 2007]. ActivatedEGFR
stimulates MUC5AC gene expression via the
Erk pathway and NFkB [Nadel and Burgel,
2001].

Other ligand-receptor combinations can also
stimulatemucin synthesis via theErk pathway.
Insulin-like growth factor (IGF), but not EGF,
will promote the expression of theMuc4 gene in
rat mammary epithelial cells [Zhu et al., 2000],
probably mimicking what happens in the
mammary gland prior to pregnancy. IGF treat-
ment activates the Erk pathway, and the
induction of Muc4 is prevented by MEK inhib-
itors or dominant negative MEK. The Muc4
gene is regulated in part by the PEA3 tran-
scription factor [Perez et al., 2003]. PEA3 is
activated by signaling through two different
MAPK pathways, Erk and JNK.

POST-TRANSCRIPTIONAL REGULATION

Transcript Stabilization

Even if a gene is expressed to make a
transcript, there are multiple mechanisms by
which production of the protein and its appear-
ance at the cell surface, whether in the mem-
brane or secreted, can be abrogated. Rapid
transcript turnover is one of the earliest control
mechanisms after transcription and is regu-
lated by specific sequences of the transcript
which bind stabilizing proteins. Neutrophils
play an important role in inflammatory proc-
esses. For two mucins neutrophil elastase has
been shown to increase mucin levels in airway
cells by transcript stabilization: MUC5AC
[Fischer andVoynow, 2002] andMUC4 [Fischer
et al., 2003]. In the case of MUC5AC, the
transcript stability required the production of

ROS. How these then are involved in transcript
stabilization is yet unclear. However, ROS
generated through NADP(H):quinine oxidore-
ductase I by neutrophil elastase have also been
shown to influence MUC5AC gene expression
[Zheng et al., 2007]. Thus, there are multiple
mechanisms by which the elastase can regulate
mucins.

Post-Translational Regulation

Muc4 is produced in abundant amounts in the
rat mammary gland and secreted into milk
[Rossi et al., 1996]. In contrast, about 100-fold
less Muc4 is produced by the gland of virgin
animals, even though the transcript levels are
about the same in the virgin and lactating
animals [Price-Schiavi et al., 1998]. Temporal
analyses indicate that the change in Muc4
levels occurs around mid-pregnancy. Studies
of isolated mammary epithelial cells showed a
marked inhibition of Muc4 production by TGFb
[Price-Schiavi et al., 1998, 2000], consistent
with observations by others that TGFb levels in
the mammary gland fall in mid-pregnant
animals [Ewan et al., 2002]. Muc4 levels are
also high in rat mammary tumors [Rossi et al.,
1996] and some human breast cancers
[Komatsu et al., 1999], consistent with a loss of
responsiveness of many tumors to TGFb [Der-
ynck et al., 2001; Wilson et al., 2005]. Analyses
of the pathway involved in the TGFb effect on
Muc4 in rat mammary cells showed an activa-
tion of SMAD2; SMAD2 antisense blocked the
ability of TGFb to inhibitMuc4 production [Soto
et al., 2003]. Interestingly, interferon-gwas also
able to block the TGFb inhibition of Muc4
production, though it had no affect acting alone
on the mammary cells. Interferon-g was shown
to act by increasing the levels of the inhibitory
SMAD7 in themammary cells [Soto et al., 2003].

Muc4 is synthesized as a high Mr precursor
that is cleaved in the endoplasmic reticulum to
its two subunits [Sheng et al., 1990]. Pulse-
chase labeling studies in rat mammary epithe-
lial cells indicated that TGFb represses this
cleavage [Price-Schiavi et al., 2000]. Thus, the
synthesis of Muc4 is being blocked in the
endoplasmic reticulum. One potential mecha-
nism for this effect is that the precursor fails to
pass the ‘‘copy-editing’’ step in processing and is
shunted into the proteosome for degradation.
This mechanism is supported by observations
that proteosome inhibitors can inhibit the
ability of TGFb to repress Muc4 production.
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Moreover, inhibition of proteosome activity
represses precursor cleavage to the two sub-
units.
TGFb may be a general physiological inhib-

itor of Muc4 production. In the rat cornea Muc4
is found only in the most superficial layers of
the stratified epithelium [Swan et al., 2002].
Treatment of stratified cultures of rat corneal
epithelial cells with TGFb inhibited Muc4
production and resulted in accumulation of
aggregates of Muc4 in the basal and medial cell
layers, indicating theMuc4 is being produced in
all of the cell layers, but is degraded by the
proteosome in the basal and medial cell layers.
In the normal cornea Muc4 production is likely
being suppressed by TGFb; both the growth
factor and its ligand are primarily present in the
more basal layers of the stratified epithelium
[Tuli et al., 2006].
The other site at which Muc4 regulation is

very important is the uterus [McNeer et al.,
1998]. Muc4 expression at the surface of the
uterine epithelium is high in the virgin rat, but
disappears during pregnancy just before
implantation. Studies in isolated uterine epi-
thelial cells indicate that the key factor in the
repression of Muc4 is TGFb [Idris and Carra-
way, 2000]. Although the loss of Muc4 in vivo is
due to changes in the balance of progesterone
and estrogen [McNeer et al., 1998], these
hormones have no effect on Muc4 production
in the cultured uterine epithelial cells [Idris
and Carraway, 2000]. Instead, the inhibition
appears to be due to a paracrine effect, as shown
by co-cultures of uterine fibroblasts and epithe-
lial cells. Progesterone acts on the fibroblasts
to produce TGFb, which then inhibits Muc4
production by the epithelial cells. Interestingly,
both transcript and protein levels are repressed
in cells treated by TGFb [Idris and Carraway,
2000], suggesting that the growth factor is
acting at multiple levels in these cells.

PERSPECTIVE

Undoubtedly, we have only begun to tap the
regulatory mechanisms responsible for the
highly diverse patterns of mucin expression,
whether tissue or cellular. Not surprisingly,
much of the effort has been directed toward
disease conditions, particularly diseases of the
airway and carcinomas. Carcinomas have been
investigated bothasmodels for normal epithelia
and to understand the altered expression of

mucins that frequently accompany neoplasia.
In either case one caveat that must be recog-
nized is the heterogeneity of tumors. One
surprising feature of this research to date is
the prevalence of the Erk pathway in mucin
regulation. One suspects that this general
mechanism for regulation is frequently discov-
ered because of the availability of reagents for
its investigation and that other mechanisms
responsible for fine-tuning regulation in differ-
ent cell types will be uncovered as this research
advances.
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